Session 1

Introduction to Computational Chemistry

Introduction to Computational Chemistry Computational (chemistry education)

and/or

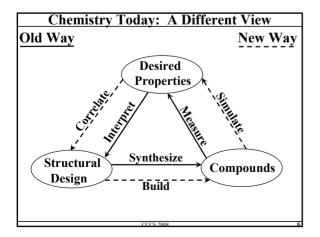
(Computational chemistry) education

- <u>First one</u>: Use computational tools to help increase student understanding of material already covered in various courses
- <u>Second one</u>: Teach students about computational chemistry (molecular modeling) itself, in both courses and research projects

Outline

- Why Molecular Modeling?
- Definitions; New way of doing chemistry
- Molecular Modeling Methods
- 1. Molecular Mechanics
- 2. Hartree-Fock and post-HF
- 3. Semiempirical
- 4. Density Functional Theory
- Method Comparisons
 - Accuracy
- Expense
- Units, Lab Exercise overview

Why Computational Chemistry??

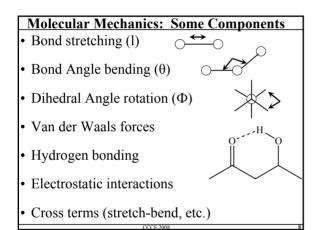

• In 1929, P.A.M. Dirac wrote:

- "The underlying physical laws necessary for the mathematical theory of . . . **the whole of chemistry** are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble."

-Dirac didn't have access to digital computers, but we do!

Molecular Modeling Defined

- Provides information that is complementary to experimental data on the structures, properties, and reactions of substances
- Largely based on a few algorithms: Schrödinger and Kohn-Sham Equations
- Used to require the use of high performance computers (architecture)
- Modern desktop machines now do what supercomputers did ten years ago
- **Everyone** now has access to this tool!!


1. Molecular Mechanics

- Apply classical mechanics to molecules
 → No electrons, no orbital interactions!!
 - Atoms are spheres with element dependent mass
 - Bonds are springs that obey Hooke's Law:

 $\mathbf{F} = -k\mathbf{x}$

where k is the force constant (for a specified bond type between certain atoms)

 Other types of springs represent bond angles, dihedral angles, etc.

Molecular Mechanics: Mathematics • Bond stretching (MM2): $V_r = \frac{1}{2}k_l(l-l_0)^2[1-B(l-l_0)]$ • Angle bending: $V_{\theta} = \frac{1}{2}k_{\theta}(\theta - \theta_0)^2[1 + C(\theta - \theta_0)^4]$ • Dihedral angle rotation (torsion): $V_{\varphi} = \frac{k}{2}(1 + \cos\varphi) + \frac{k'}{2}(1 + \cos 2\varphi) + \frac{k''}{2}(1 + \cos 3\varphi)$ • Van der Waals: $V_{vdW} = Ae^{-B\rho} - \frac{C_6}{\rho^6}$

Molecular Mechanics: Overall Energy

- Also called "steric" energy
 - Summation of all the terms:

 $V_{steric} = V_{stretch} + V_{bend} + V_{torsion} + V_{vdW} + \dots$

- Collection of functional forms and associated constants is called a *force field*
- BEWARE: "Energies" reported by MM are meaningless (not externally referenced)
 - These values may be useful when comparing conformers of the same molecule

Parameters

- ~100 elements: N(N+1)/2 = 5050 single bonds
- Multiple bonds: Define atom hybridizations \sim 300 atom types: \rightarrow 45,150 k_i values!
 - Also need $l_0, \theta_0, k' \& k''$ (torsions), and numerous other values for other terms
- \rightarrow To be thorough, would need ~10⁸ parameters gathered from experimental data, or from higher level theories!
- Force fields for particular types of molecules
- MM2, MM3 (organics); Amber, CHARMM (biomolecules); others for inorganics, etc.

Molecular Mechanics

- Advantages: Very fast, excellent structural results (if compound matches parameter set), works for large molecules)
 - Used to produce a starting geometry
 - Geometry optimization: Move all atoms until sum of all forces on each = 0
- **Disadvantages:** Many compounds do not have good parameters available
 - No orbital information
 - Can't study reactions, transition states, etc.

Quantum Mechanics

Electronic structure based on: $\hat{H} \Psi = E \Psi$ \hat{H} is known exactly

 Ψ is unknown, except for some simple systems

- Hydrogen, and hydrogen-like atoms
- Particle in a box, etc.

$$\hat{H} = -\sum_{i} \frac{\hbar^{2}}{2m_{e}} \nabla_{i}^{2} - \sum_{k} \frac{\hbar^{2}}{2m_{k}} \nabla_{k}^{2} - \sum_{i} \sum_{k} \frac{e^{2}Z_{k}}{r_{ik}} + \sum_{i < i} \frac{e^{2}}{r_{ii}} + \sum_{k < l} \frac{e^{2}Z_{k}Z_{l}}{r_{kl}}$$

 \rightarrow Want to get Ψ , but have to make approximations

Approximations Used

- **1. Born-Oppenheimer**: Compared to electrons, nuclei are stationary
 - Electrons move in field of fixed nuclei
- Hartree-Fock: Separate Ψ (many electron wavefunction) into series of one electron spin orbitals
- 3. LCAO (Linear Combination of Atomic Orbitals): MO's expressed as linear combinations of single electron atomic orbitals, represented by basis functions

Ab Initio Methods

• Use complete \hat{H} and estimated Ψ (symbol ϕ)

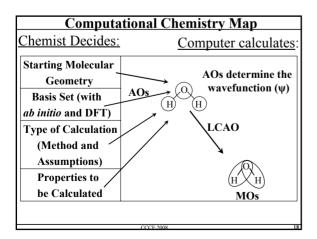
• Molecular orbital construction (LCAO):

$$\boldsymbol{\phi} = \sum_{i=1}^{N} a_i \boldsymbol{\varphi}_i$$

Basis set = set of N functions (GTO's) φ_i , each associated with a molecular orbital expansion coefficient a_i

Variational Principle: $(E_{\phi} \ge E_{\psi} = E_{\text{experimental}})$ – Process: Iteratively adjust *a*, values until lowest energy

(ground state) is found


 \rightarrow "Self-Consistent Field" approach

Goal

- → Mathematical representation of chemical reality
- Basis set should approximate actual wave function sufficiently well to give chemically meaningful results
- Using more complex basis sets improves results at the cost of added computational expense
- Question: *Quantitative* or *qualitative* results?
 - Always a trade-off between accuracy and computational cost

2. Hartree-Fock Method

- ϕ given by Slater determinant
 - Each electron moves in an average electric field produced by all the other electrons
 - No instantaneous e⁻/e⁻ repulsion is included
 - Result:
 - \rightarrow e⁻/e⁻ repulsion is overestimated
 - \rightarrow Energy results are generally not accurate
 - $-\phi$ produced is often "close enough" that some useful information can be obtained
 - DFT methods are now much more popular
 - Method serves as a starting point for more advanced theories

Post HF Methods

• Deals more explicitly with e⁻/e⁻ interactions

- Configuration Interaction (CI):

- Improve the wave function by adding in contributions from unoccupied orbitals
- Extreme computational cost

- Møller-Plesset Perturbation Theory:

- Simplify \hat{H} so exact wavefunctions and energies are found, then use these values to estimate the wave function and energies for the complete \hat{H}
- Computational cost increases rapidly

Problems with HF Approach

- \rightarrow Calculated energies are not good
- \rightarrow Iterative solution process is time consuming
- \rightarrow N⁴ total integrals need to be evaluated
 - (N = number of basis functions used)

Overcoming HF Problems:

- 1. Semiempirical approach: Ignore part of \hat{H}
- Replace some integrals with *parameters* so that calculations better match experimental results
- 2. Density Functional Theory approach
 - Get rid of troublesome wave function altogether
 - Use electron density instead

3. Semiempirical Methods

- Simplifications:
 - 1. Only look at valence electrons
 - Core electrons subsumed into nucleus
 - 2. Neglect certain integrals (distance cut-off)
 - 3. Parameterize other integrals using experimental results
 - Different semiempirical methods are parameterized to reproduce different properties
 - 4. Use a minimal basis set (3-21G)
 - 5. Employ a non-iterative solution process

Semiempirical Methods: AM1, PM3, RM1

- Differ in how e⁻/e⁻ repulsion is handled
- Advantages:
 - Fast \rightarrow Can handle fairly large molecules
 - Good qualitative, some \sim quantitative results
 - Parameters available for solution phase
- Disadvantages:
 - Parameters not available for all atoms
 - Molecule/parameterization set similarity
 - Only properties that are parameterized for
 - Limited to ground state equilibrium geometries

4. Density Functional Theory

- A type of *ab initio* method, but may include some parameterization
 - Hohenberg and Kohn (1964)
 - "The ground state energy E of an N-electron system is a functional of the electronic density ρ , and E is a minimum when evaluated with the exact ground state density"
 - A function whose argument is also a function is called a *functional*
 - A functional enables a function to be mapped to a number

DFT Process

The energy is minimized with respect to variations in ρ , subject to the constraint of charge conservation:

$$N = \int \boldsymbol{\rho}(\mathbf{r}) d\mathbf{r}$$

- HF-SCF Theory is 4N dimensional
- Electron density is 3N dimensional (N = # of e^{-'s})
 - Get rid of one dimension (spin)
- Easier to deal with electron density than with wave functions
- DFT is also an iterative process, as was HF

Differences Between HF and DFT

- DFT contains no approximations. It is exact.
- All we need to know is the *exchange-correlation* energy, $E_{\rm xc}$, as a function of ρ
 - We must approximate $E_{\rm xc}$
- HF is a deliberately approximate theory so that we can solve the equations exactly
- So, with DFT our theory is exact and the equations are solved approximately, while with HF the theory is approximate so we can solve the equations exactly

DFT

- Some common functionals:
 - B3LYP, B3PW91, VWN#5, B88LYP, etc.
 Differ in the way E_{xe} is approximated
- →With few exceptions, DFT is the most costeffective method to achieve a given level of quantitative accuracy
- Electron correlation included with less expense
- Basis functions are still used to adjust the electron density

Brief Comparison of Methods								
Things to consider:								
	ММ	HF	Semi- Emp.	DFT				
Advantages	Fast, large molecules	Results <i>can</i> be ~ quantitative	Good qual. and ~quant. results	Better accuracy than HF				
Dis- advantages	Parameters may not be available	e ⁻ correlation limits accuracy	Parameters may not be available	Limited to smaller systems				
Expense	Least expensive technique	Expense is quite high	Inexpensive technique	Expense is high				

 _
 _

Accuracy							
Method	∆ _f H kcal mol ⁻¹	Bond length (Å)	Bond angle (°)	Dipole moment (D)			
MM2	0.5	0.01	1.0	0.1			
MM3	0.6	0.01	1.0	0.07			
AM1	8	0.05	3.3	0.5			
PM3	8	0.04	3.9	0.6			
HF/ 6-31G(d)	4	0.03	1.4	0.2			
B3LYP/ 6-31G(d)	-	0.02	1.3	0.2			

Expense Comparisons

- Basis Set
 - (M = # of atoms; N = # of basis functions)
 - MM scales as M²
 - AM1/PM3 scale as N² to N⁴
 - HF scales as N^2 to N^4
 - DFT scales as N³
 - MP2 scales as N⁵
 - MP4 scales as N7
 - Full Configuration Interaction scales as N!

Units in Computational Chemistry

- Bohr: Atomic unit of Length (a₀)
 - Equal to the radius of the first Bohr orbit for a hydrogen atom
 - 5.29 x 10⁻¹¹ m (0.0529 nm, 52.9 pm, 0.529 Å)
- Hartree: Atomic unit of Energy
 - Equal to twice the energy of a ground state hydrogen atom
 - 627.51 kcal/mole
 - 2625.5 kJ/mole
 - 27.211 eV
 - 219474.6 cm⁻¹

Lab Exercises

• Using WebMO

Web-based GUI for computational chemistry

- Directions for other software at the CCCE site: (<u>http://www.computationalscience.org/ccce/</u>)
- Drawing and viewing molecules
- Running various calculations
 - -Determining bond distances and angles
 - -Potential energy surface calculations
 - -Viewing orbitals